Producción Científica

 

 

La evaluación de la investigación es actualmente uno de los temas de mayor relevancia y controversia en la ciencia y la academia, especialmente en el ámbito universitario. Esta evaluación se utiliza comúnmente para clasificar instituciones, grupos, productos académicos como las revistas científicas, y al personal docente investigador. Los indicadores de calidad e impacto de la investigación influyen decisivamente en el ascenso en carreras académicas, selección de beneficiarios de becas e incentivos, culminación de programas de alto nivel (como maestrías y doctorados), asignación de recursos en instituciones y centros de investigación, y en la definición de políticas públicas a nivel institucional y gubernamental.

 

 

References, the mechanism scientists rely on to signal previous knowledge, lately have turned into widely used and misused measures of scientific impact. Yet, when a discovery becomes common knowledge, citations suffer from obliteration by incorporation. This leads to the concept of hidden citation, representing a clear textual credit to a discovery without a reference to the publication embodying it. Here, we rely on unsupervised interpretable machine learning applied to the full text of each paper to systematically identify hidden citations. We find that for influential discoveries hidden citations outnumber citation counts, emerging regardless of publishing venue and discipline. We show that the prevalence of hidden citations is not driven by citation counts, but rather by the degree of the discourse on the topic within the text of the manuscripts, indicating that the more discussed is a discovery, the less visible it is to standard bibliometric analysis. Hidden citations indicate that bibliometric measures offer a limited perspective on quantifying the true impact of a discovery, raising the need to extract knowledge from the full text of the scientific corpus.

 

 

En la concepción estructuralista de teoría científica se afirma que sus tesis son neutrales respecto a compromisos epistemológicos, puesto que su análisis es estructural (Diederich, 1996). En el presente texto nos proponemos mostrar que no existe tal neutralidad epistemológica en una de las piezas clave del estructuralismo metateórico, nos referimos a la noción “aplicaciones intencionales”, y que de lo anterior se deriva un compromiso epistémico relacionado con la justificación de teorías científicas, según el cual, la ciencia es una “red” de relaciones lógicas entre teorías. Para lograr lo anterior nos proponemos analizar las implicaciones semánticas y epistemológicas de esa noción y el rol que juega en la contrastación teórica. Una de las consecuencias más radicales del análisis propuesto es que la noción anterior (aplicaciones intencionales) implica que unas teorías están justificadas por otras; en otras palabras, la justificación de teorías científicas caería en un coherentismo interteórico, que precisaremos más adelante. Naturalmente, es importante advertir que esta tesis y esta implicación coherentista la aceptan los defensores del estructuralismo metateórico (Balzer, Moulines & Sneed, 1987) y (Díez & Moulines, 1997). Sin embargo, el punto realmente problemático, y lo novedoso del presente artículo, es que el coherentismo compromete la justificación de las teorías en cuanto implica un regressus ad infinitum en la reconstrucción formal. Además, este defecto del estructuralismo conlleva a otras dos réplicas adicionales, una desde el punto de vista pragmático y otra desde el punto de vista semántico. El primero consiste en que, si aceptamos la tesis del regressus la reconstrucción puede ser infructuosa para efectos pragmáticos, i.e. la corrección formal de una teoría nos obliga a corregir el conjunto de teorías ya presupuestas que intervienen en ella. De la misma manera, la dependencia semántica de una teoría respecto a sus antecesoras implica que si uno de sus conceptos fundamentales es corregido o modificado, entonces habría que hacer una revisión general de todas las teorías relacionadas en las que el concepto en cuestión es relevante. El trabajo, es pues, un avance en esta dirección.

 

 

Despite the common assumption that citations are indicative of an article’s scientific merit, increasing evidence indicates that citation counts are largely driven by variables unrelated to quality. In this article, we treat people’s decisions of what to cite as an instance of memory retrieval and show that observed citation patterns are well accounted for by a model of memory. The proposed exposure model anticipates that small alterations in factors that affect people’s ability to retrieve to-be-cited articles from memory early in their life cycle are magnified over time and can lead to the emergence of highly cited papers. This effect occurs even when there is no variation in the starting point exposure probabilities (i.e. when assuming a level playing field where all articles are treated equally and of equal ‘quality’), and is exacerbated by natural variation in retrievability of articles due to encoding. We discuss the implications of the model within the context of research evaluation and hiring, tenure and promotion decisions.

 

 

Scientometric assessments of Open Educational Resources (OER) offer a way to quantitatively represent teaching in higher education through openly available and accessible artefacts. They could serve science policy monitoring and lead to greater visibility of higher education teaching in a recognition and reward system. In this context, we discuss possible statistics for OER. In a pre-study, a first version of OER indicators was discussed in three focus groups. The findings of these discussions were incorporated into the creation of a more comprehensive second version of a framework for OER statistics, which was evaluated in detail in six expert interviews. After incorporating changes as a result of the evaluation, a third version of the framework for OER statistics emerged that enables scientometric measurements of OER, while considering the common criticisms of scientometric measurements. The framework comprises an individual level, which recognizes all OER created by an individual, and an institutional level, which serves to quantify OER created by an institution. At the individual level, productivity, cooperation, resonance, openness, altmetric and transfer indicators are available. In addition, we record dichotomously whether an OER certification exists. At the institutional level, additional support indicators are proposed to recognize achievements in the development and maintenance of OER-promoting structures at institutional level.

 

 

Machine learning, a subset of artificial intelligence, has experienced rapid advancements and applications across various domains. In education, its integration holds great potential to revolutionize teaching, learning, and educational outcomes. Despite the growing interest, there needs to be more comprehensive bibliometric analyses that track the trajectory of machine learning’s integration into educational research. This study addresses this gap by providing a nuanced perspective derived from bibliometric insights. Using a dataset from 1986 to 2022, consisting of 449 documents from 145 sources retrieved from the Web of Science (WoS), the research employs network analysis to unveil collaborative clusters and identify influential authors. A temporal analysis of annual research output sheds light on evolving trends, while a thematic content analysis explores prevalent research themes through keyword frequency. The findings reveal that co-authorship network analysis exposes distinct clusters and influential figures shaping the landscape of machine learning in educational research. Scientific production over time reveals a significant surge in research output, indicating the field’s maturation. The co-occurrence analysis emphasizes a collective focus on student-centric outcomes and technology integration, with terms like “online” and “analytics” prevailing. This study provides a nuanced understanding of the collaborative and thematic fabric characterizing machine learning in educational research. The implications derived from the findings guide strategic collaborations, emphasizing the importance of cross-disciplinary engagement. Recommendations include investing in technological infrastructure and prioritizing student-centric research. The study contributes foundational insights to inform future endeavors in this ever-evolving field.

 

 

Aim:nUnderstanding the factors that influence the probability of endocrinology thesis publication can guide aspiring researchers in their academic pursuits. This study aimed to assess the publication rate of endocrinology theses and identify the factors that affect thesis publication. Methods: Endocrinology theses between January 1980 and April 2023 were assessed. The publication rates of theses and those published in journals indexed in SCIE and Scopus were examined. The thesis topics, study design, institution, index of the journal, author’s number of first-author publications, H-index, and number of publications by thesis advisors were analyzed to determine their impact on the likelihood of publication. Results: Out of 277 theses, 142 (51.3%) of them had been published in international or national journals. One hundred seventeen (42.2%) were published in SCIE/Scopus indexed journals. A relationship was found between the thesis having a publication and that being conducted in a training and research hospital, a higher number of first-author publications, and a more recent year of the thesis. The H-index of thesis advisors for theses published in SCIE/Scopus-indexed journals was significantly higher (p=0.029). Conclusion: The rate of publication in international peer-reviewed journals for endocrinology theses was higher than the national average. However, there are still many theses waiting to be published. Enhancing the publication rate of endocrinology theses requires a systematic approach that addresses the identified factors affecting publication probability.

 

 

La relevancia de la salud mental en la sociedad contemporánea la posiciona como una esfera crucial en los centros de atención sanitaria, debido a la alta incidencia de trastornos mentales, el sufrimiento que experimentan los pacientes y el uso de medicamentos psicofármacos. Los psicofármacos son un tipo de medicamentos que se usan en el tratamiento de enfermedades de salud mental y trastorno mental grave, se clasifican en cuatro grandes grupos: antidepresivos, ansiolíticos, estabilizadores del estado de ánimo, antipsicóticos. Por este motivo, el objetivo de la presente investigación fue realizar una revisión bibliográfica sobre la utilización de psicofármacos en la población, centrándose en estudios publicados en los últimos 5 años. La metodología empleada fue de tipo no experimental, bibliográfica y descriptiva, consistiendo en la recopilación y análisis de artículos científicos publicados en los últimos 5 años en diversas bases de datos como PubMed, Scielo, Dialnet y Google Scholar. Como resultados obtenidos: Los artículos detectados relacionados a uso de psicofármacos se distribuyen de la siguiente manera: el 40% se encuentran en la base de datos de PubMed, el 36% en Dialnet, el 12 % en Scielo y Google Scholar. Por otra parte, en el 40% de los artículos encontrados mencionan que el sexo más consumidor de psicofármacos es femenino. En el 84% de los artículos encontrados la población consumió antidepresivos, en el 44% ansiolíticos, en el 36% antipsicóticos y el 12% estabilizadores el ánimo, estos hallazgos subrayan la importancia de continuar investigando y abordando el uso de psicofármacos, así como la necesidad de comprender mejor cómo estos afectan a diferentes poblaciones.

 

 

This study was conducted to determine EFL students’ skills in writing a thesis introduction. Five student dipilih berdasarkan level keterampilan menulis di mana kelima mahasiswa ini merupakan mahasiswa terbaik. The analysis method used is thematic progression. The student texts were analyzed for each paragraph, then counted how many sentences applied the Constant Theme Pattern, Linear Theme Pattern, Split Theme Pattern, and Derived Theme Pattern. The findings indicated that from the total 194 sentences being analysed, seventy-six employed this pattern to connect ideas. Another aspect of connecting ideas is the cohesive devices used. The higher application of definite articles, pronouns and word repetition is evident. Students majorly drew definite articles and demonstrative pronouns (e.g. this, that) which then makes it adaptable for readers to follow their idea development in a paragraph. Regarding the coherence, students in this study significantly relied on the theme of sentences to be the source of their idea development. Despite the clarity and coherence being well managed in students’ writing, the link between ideas can still be diversed by employing other patterns. Moreover, some rhemes contain new information that need further elaboration as the text grows. Students have applied the rules of thematic progression, although there are several sentences that do not comply with the principles of cohesion and coherence. Guidance and feedback from the lecturer is really needed so that writing skills are maintained, especially in writing the introduction to the thesis.

 

 

Citation networks have been thought to exhibit scale-free property for many years; however, this assertion has been doubted recently. In this paper, we conduct extensive experiments to resolve this controversial issue. We firstly demonstrate the scale-free property in scale-free networks sampled from the popular Barabasi-Albert (BA) model. To this end, we employ a merged rank distribution, which is divided into outliers, power-law segment, and non-power-law data, to characterize network degrees, and propose a random sample consensus (RANSAC)-based method to identify power-law segments from merged rank distributions, and use the Kolmogorov-Smirnov (KS) test to examine the scale-free property in power-law segments. Subsequently, we apply the same methods to examine the scale-free property in real-world citation networks. Experimental results confirm the scale-free property in citation networks and attribute previous skepticism to the presence of outliers.