Artículo
Contribution of Deep-Learning Techniques Toward Fighting COVID-19: A Bibliometric Analysis of Scholarly Production During 2020
Resumen
","
"Authors","Author full names","Author(s) ID","Titles","Year","Source title","Volume","Issue","Art. No.","Page start","Page end","Page count","DOI","Cited by","Link","Affiliations","Authors with affiliations","Abstract","Indexed Keywords","Author Keywords","Molecular Sequence Numbers","Chemicals/CAS","Funding Details","Funding Texts","References","Correspondence Address","Editors","Tradenames","Manufacturers","Publisher","Conference name","Conference code","Conference location","Conference date","Sponsors","ISSN","ISBN","CODEN","PubMed ID","Language of Original Document","Abbreviated Source Title","Document Type","Publication Stage","Open Access","Source","EID"
"Chicaiza J.; Villota S.D.; Vinueza-Naranjo P.G.; Rumipamba-Zambrano R.","Chicaiza, Janneth (56535509300); Villota, Stephany D. (57039217000); Vinueza-Naranjo, Paola G. (57192924899); Rumipamba-Zambrano, Ruben (57191039229)","56535509300; 57039217000; 57192924899; 57191039229","Contribution of Deep-Learning Techniques Toward Fighting COVID-19: A Bibliometric Analysis of Scholarly Production During 2020","2022","IEEE Access","10","","","33281","33300","19","10.1109/ACCESS.2022.3159025","1","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126326388&doi=10.1109%2fACCESS.2022.3159025&partnerID=40&md5=e59260ae9cf7597088ff5fea6e0d231e","Departamento de Ciencias de la Computación y Electrónica, Universidad Técnica Particular de Loja, Loja, 110105, Ecuador; Gestión de Investigación, Desarrollo e Innovación, Instituto Nacional de Investigación en Salud Pública, Quito, 170136, Ecuador; Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba, 060108, Ecuador; Corporación Nacional de Telecomunicaciones - Cnt E.P., Quito, 170528, Ecuador; Universidad Ecotec, Guayas, Samborondn, 092302, Ecuador","Chicaiza J., Departamento de Ciencias de la Computación y Electrónica, Universidad Técnica Particular de Loja, Loja, 110105, Ecuador; Villota S.D., Gestión de Investigación, Desarrollo e Innovación, Instituto Nacional de Investigación en Salud Pública, Quito, 170136, Ecuador; Vinueza-Naranjo P.G., Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba, 060108, Ecuador; Rumipamba-Zambrano R., Corporación Nacional de Telecomunicaciones - Cnt E.P., Quito, 170528, Ecuador, Universidad Ecotec, Guayas, Samborondn, 092302, Ecuador","COVID-19 has dramatically affected various aspects of human society with worldwide repercussions. Firstly, a serious public health issue has been generated, resulting in millions of deaths. Also, the global economy, social coexistence, psychological status, mental health, and the human-environment relationship/dynamics have been seriously affected. Indeed, abrupt changes in our daily lives have been enforced, starting with a mandatory quarantine and the application of biosafety measures. Due to the magnitude of these effects, research efforts from different fields were rapidly concentrated around the current pandemic to mitigate its impact. Among these fields, Artificial Intelligence (AI) and Deep Learning (DL) have supported many research papers to help combat COVID-19. The present work addresses a bibliometric analysis of this scholarly production during 2020. Specifically, we analyse quantitative and qualitative indicators that give us insights into the factors that have allowed papers to reach a significant impact on traditional metrics and alternative ones registered in social networks, digital mainstream media, and public policy documents. In this regard, we study the correlations between these different metrics and attributes. Finally, we analyze how the last DL advances have been exploited in the context of the COVID-19 situation. © 2013 IEEE.","Public health; Bibliometrics analysis; COVID-19; Deep learning; Global economies; Human environment; Human society; Learning techniques; Mental health; Public health issues; Scholarly production; Deep learning","Bibliometric analysis; COVID-19; deep learning; scholarly production","","","","","C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, and L. Zhang, ""Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China,"" Lancet, vol. 395, no. 10223, pp. 497-506, Jun. 2020.; World Health Organization. Timeline: WHO's COVID-19 Response. Accessed: Sep. 25, 2021. [Online]. Available: https://www.who.int/ emergencies/diseases/novel-coronavirus-2019/interactive-timeline#!; World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Accessed: Mar. 9, 2022. [Online]. Available: https://covid19.who.int/; A. Aristovnik, D. Ravšelj, and L. Umek, ""A bibliometric analysis of COVID-19 across science and social science research landscape,"" Sustainability, vol. 12, no. 21, p. 9132, Nov. 2020.; Evidentia Médica. Evidentia COVID-19. Accessed: Sep. 28, 2021. [Online]. Available: https://evidentiamedica.com/covid19/; Y. Gong, T. Ma, Y. Xu, R. Yang, L. Gao, S. Wu, J. Li, M. Yue, H. Liang, X. He, and T. Yun, ""Early research on COVID-19: A bibliometric analysis,"" Innov. J., vol. 1, no. 2, 2020, Art. no. 100027.; F. De Felice and A. Polimeni, ""Coronavirus disease (COVID-19): A machine learning bibliometric analysis,"" Vivo, vol. 34, no. 3, pp. 1613-1617, 2020.; M. K. Linnenluecke, M. Marrone, and A. K. Singh, ""Conducting systematic literature reviews and bibliometric analyses,"" Austral. J. Manage., vol. 45, no. 2, pp. 175-194, May 2020.; A. Abd-Alrazaq, J. Schneider, B. Mifsud, T. Alam, M. Househ, M. Hamdi, and Z. Shah, ""A comprehensive overview of the COVID-19 literature: Machine learningfibased bibliometric analysis,"" J. Med. Internet Res., vol. 23, no. 3, Mar. 2021, Art. no. e23703.; Y. Yu, Y. Li, Z. Zhang, Z. Gu, H. Zhong, Q. Zha, L. Yang, C. Zhu, and E. Chen, ""A bibliometric analysis using VOSviewer of publications on COVID-19,"" Ann. Transl. Med., vol. 8, no. 13, p. 816, Jul. 2020.; P. Wang and D. Tian, ""Bibliometric analysis of global scientific research on COVID-19,"" J. Biosaf. Biosecur., vol. 3, no. 1, pp. 4-9, Jun. 2021.; N. O'Brien, M. Barboza-Palomino, J. Ventura-León, T. Caycho-Rodríguez, J. S. Sandoval-Díaz, W. López-López, and G. Salas, ""Coronavirus disease (COVID-19). A bibliometric analysis,"" Revista Chilena Anestesia, vol. 49, no. 3, pp. 408-415, 2020.; Z. Kozlakidis, J. Završnik, P. Kokol, C. M. Forteza, C. Zhang, J. Fan, Y. Gao, N. Zhao, R. Dai, H. Zhang, X. Feng, G. Shi, J. Tian, C. Chen, B. D. Hambly, and S. Bao, ""Bibliometric analysis on COVID-19: A comparison of research between English and Chinese studies,"" Frontiers Public Health, vol. 8, Aug. 2020, Art. no. 477.; L. Casado-Aranda, J. Sánchez-Fernández, and M. V.-D. Jesús, ""Analysis of the scientific production of the effect of COVID-19 on the environment: A bibliometric study,"" Environ. Res., vol. 193, pp. 1-12, Feb. 2021.; K. Raza, ""Artificial intelligence against COVID-19: A meta-analysis of current research,"" in Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach, vol. 78, A. Hassanien, N. Dey, and S. Elghamrawy, Eds. Cham, Switzerland: Springer, 2020, pp. 165-176.; G. R. Shinde, A. B. Kalamkar, P. N. Mahalle, N. Dey, J. Chaki, and A. E. Hassanien, ""Forecasting models for coronavirus disease (COVID-19): A survey of the state-of-the-art,"" Social Netw. Comput. Sci., vol. 1, no. 4, pp. 1-15, Jul. 2020.; J. Shuja, E. Alanazi, W. Alasmary, and A. Alashaikh, ""COVID-19 open source data sets: A comprehensive survey,"" Int. J. Speech Technol., vol. 51, no. 3, pp. 1296-1325, Mar. 2021.; V. Durieux and P. A. Gevenois, ""Bibliometric indicators: Quality measurements of scientific publication,"" Radiology, vol. 255, no. 2, pp. 342-351, May 2010.; L. Machi and B. McEvoy, The Literature Review: Six Steps to Success. Newbury Park, CA, USA: Sage, May 2016.; E. Aromataris and A. Pearson, ""The systematic review: An overview,"" Amer. J. Nursing, vol. 114, no. 3, pp. 53-58, 2014.; M. H. Murad, N. Asi, M. Alsawas, and F. Alahdab, ""New evidence pyramid,"" Evidence Based Med., vol. 21, no. 4, pp. 125-127, Aug. 2016.; J. M. Helm, A. M. Swiergosz, H. S. Haeberle, J. M. Karnuta, J. L. Schaffer, V. E. Krebs, A. I. Spitzer, and P. N. Ramkumar, ""Machine learning and artificial intelligence: Definitions, applications, and future directions,"" Current Rev. Musculoskeletal Med., vol. 13, no. 1, pp. 69-76, Feb. 2020.; G. Briganti and O. L. Moine, ""Artificial intelligence in medicine: Today and tomorrow,"" Frontiers Med., vol. 7, Feb. 2020, Art. no. 27.; A. Ramesh, C. Kambhampati, J. Monson, and P. Drew, ""Artificial intelligence in medicine,"" Ann. Roy. College Surgeons England, vol. 86, no. 5, pp. 334-338, Oct. 2004.; M. E. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M. A. Kadir, Z. B. Mahbub, K. R. Islam, M. S. Khan, A. Iqbal, N. A. Emadi, M. B. I. Reaz, and M. T. Islam, ""Can AI help in screening viral and COVID-19 pneumonia?"" IEEE Access, vol. 8, pp. 132665-132676, 2020.; A. I. Khan, J. L. Shah, and M. M. Bhat, ""CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest X-ray images,"" Comput. Methods Programs Biomed., vol. 196, Nov. 2020, Art. no. 105581.; V. K. R. Chimmula and L. Zhang, ""Time series forecasting of COVID-19 transmission in Canada using LSTM networks,"" Chaos, Solitons Fractals, vol. 135, Jun. 2020, Art. no. 109864.; Global Mining Guidelines Group. Foundations of AI: A Framework for AI in Mining. Accessed: Oct. 20, 2021. [Online]. Available: https://gmggroup. org/foundations-of-ai-a-framework-for-ai-in-mining-published/; I. D. Apostolopoulos and T. A. Mpesiana, ""COVID-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks,"" Australas. Phys. Eng. Sci. Med., vol. 43, no. 2, pp. 635-640, Jun. 2020.; J. Civit-Masot, F. Luna-Perejón, M. Domínguez Morales, and A. Civit, ""Deep learning system for COVID-19 diagnosis aid using X-ray pulmonary images,"" Appl. Sci., vol. 10, no. 13, p. 4640, Jul. 2020.; J. Chen et al., ""Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography,"" Sci. Rep., vol. 10, no. 1, pp. 1-11, Dec. 2020.; C. Sitaula and M. B. Hossain, ""Attention-based VGG-16 model for COVID-19 chest X-ray image classification,"" Appl. Intell., vol. 51, no. 5, pp. 2850-2863, Nov. 2020.; A. Altan and S. Karasu, ""Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique,"" Chaos, Solitons Fractals, vol. 140, Nov. 2020, Art. no. 110071.; S. Roy et al., ""Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound,"" IEEE Trans. Med. Imag., vol. 39, no. 8, pp. 2676-2687, Aug. 2020.; Y. Peng, Y. Tang, S. Lee, Y. Zhu, R. M. Summers, and Z. Lu, ""COVID-19-CT-CXR: A freely accessible and weakly labeled chest X-ray and CT image collection on COVID-19 from biomedical literature,"" IEEE Trans. Big Data, vol. 7, no. 1, pp. 3-12, Mar. 2021.; S. Tabik, A. Gomez-Rios, J. L. Martin-Rodriguez, I. Sevillano-Garcia, M. Rey-Area, D. Charte, E. Guirado, J. L. Suarez, J. Luengo, M. A. Valero-Gonzalez, P. Garcia-Villanova, E. Olmedo-Sanchez, and F. Herrera, ""COVIDGR dataset and COVID-SDNet methodology for predicting COVID-19 based on chest X-ray images,"" IEEE J. Biomed. Health Inform., vol. 24, no. 12, pp. 3595-3605, Dec. 2020.; L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, K. Cao, D. Liu, G. Wang, Q. Xu, X. Fang, S. Zhang, J. Xia, and J. Xia, ""Using artificial intelligence to detect COVID-19 and communityacquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy,"" Radiology, vol. 296, no. 2, pp. E65-E71, Aug. 2020.; J. Nayak, B. Naik, P. Dinesh, K. Vakula, B. K. Rao,W. Ding, and D. Pelusi, ""Intelligent system for COVID-19 prognosis: A state-of-the-art survey,"" Appl. Intell., vol. 51, no. 5, pp. 2908-2938, Jan. 2021.; C. Shorten, T. M. Khoshgoftaar, and B. Furht, ""Deep learning applications for COVID-19,"" J. Big Data, vol. 8, no. 1, pp. 1-54, Dec. 2021.; A. J. Aljohani, J. Shuja, W. Alasmary, and A. Alashaikh, ""Evaluating the dynamics of Bluetooth low energy based COVID-19 risk estimation for educational institutes,"" Sensors, vol. 21, no. 19, p. 6667, Oct. 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/19/6667; M. Valenzuela, V. Ha, and O. Etzioni, ""Identifying meaningful citations,"" in Proc. AAAI Workshops, 2015, pp. 21-26.; Digital Science. Discover the Attention Surrounding Your Research-Altmetric. Accessed: Sep. 28, 2021. [Online]. Available: https://api. altmetric.com/docs/callficitations.html; Digital Science. Sample Response for the Details Page API (Full Access) for Researchers. Accessed: Aug. 15, 2021. [Online]. Available: https://help.altmetric.com/; R Core Team, Vienna, Austria. (2016). R: A Language and Environment for Statistical Computing. Accessed: Aug. 29, 2021. [Online]. Available: https://www.R-project.org/; J. Lever and R. B. Altman, ""Analyzing the vast coronavirus literature with CoronaCentral,"" Proc. Nat. Acad. Sci., vol. 118, no. 23, May 2021.; E. Orduña-Malea, A. Martín-Martín, and E. Delgado-López-Cózar, ""The next bibliometrics: Almetrics (author level metrics) and the multiple faces of author impact,"" El Profesional Información, vol. 25, no. 3, pp. 485-496, 2016.; Scite: Smart Citations for Better Research. Accessed: Sep. 29, 2021. [Online]. Available: https://scite.ai/; L. Zhang, W. Glänzel, and K. Leuven, ""Proceeding papers in journals versus the 'regular' journal publications,"" J. Informetrics, vol. 6, no. 1, pp. 88-96, Jan. 2012.; G. Abramo and C. A. D'Angelo, ""The relationship between the number of authors of a publication, its citations and the impact factor of the publishing journal: Evidence from Italy,"" J. Informetrics, vol. 9, no. 4, pp. 746-761, Oct. 2015.; A. Ton, F. Gentile, M. Hsing, F. Ban, and A. Cherkasov, ""Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds,"" Mol. Informat., vol. 39, no. 8, Aug. 2020, Art. no. 2000028.; T. K. Mackey, J. Li, V. Purushothaman, M. Nali, N. Shah, C. Bardier, M. Cai, and B. Liang, ""Big data, natural language processing, and deep learning to detect and characterize illicit COVID-19 product sales: Infoveillance study on Twitter and Instagram,"" JMIR Public Health Surveill., vol. 6, no. 3, Aug. 2020, Art. no. e20794.; S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, and G. Jamalipour Soufi, ""Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning,"" Med. Image Anal., vol. 65, Oct. 2020, Art. no. 101794.; A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman, and P. R. Pinheiro, ""CovidGAN: Data augmentation using auxiliary classi-fier GAN for improved COVID-19 detection,"" IEEE Access, vol. 8, pp. 91916-91923, 2020.; L. Wang, Z. Q. Lin, and A. Wong, ""COVID-Net: A tailored deep convolutional neural network design for detection ofCOVID-19 cases from chest X-ray images,"" Sci. Rep., vol. 10, no. 1, pp. 1-12, Dec. 2020.; W. Ning, S. Lei, J. Yang, Y. Cao, P. Jiang, Q. Yang, J. Zhang, X. Wang, F. Chen, Z. Geng, L. Xiong, H. Zhou, Y. Guo, Y. Zeng, H. Shi, L. Wang, Y. Xue, and Z. Wang, ""Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning,"" Nature Biomed. Eng., vol. 4, no. 12, pp. 1197-1207, Dec. 2020.; S. A. Harmon et al., ""Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets,"" Nature Commun., vol. 11, no. 1, Dec. 2020, Art. no. 4080.; W. Liang et al., ""Early triage of critically ill COVID-19 patients using deep learning,"" Nature Commun., vol. 11, no. 1, Dec. 2020, Art. no. 3543.; D. D. Nguyen, K. Gao, J. Chen, R. Wang, and G.-W. Wei, ""Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning,"" Chem. Sci., vol. 11, no. 44, pp. 12036-12046, 2020.; J. S. Obeid, M. Davis, M. Turner, S. M. Meystre, P. M. Heider, E. C. O'Bryan, and L. A. Lenert, ""An artificial intelligence approach to COVID-19 infection risk assessment in virtual visits: A case report,"" J. Amer. Med. Inform. Assoc., vol. 27, no. 8, pp. 1321-1325, Aug. 2020.; A. Sheetal, Z. Feng, and K. Savani, ""Using machine learning to generate novel hypotheses: Increasing optimism about COVID-19 makes people less willing to justify unethical behaviors,"" Psychol. Sci., vol. 31, no. 10, pp. 1222-1235, Oct. 2020.; M. Toaçar, B. Ergen, and Z. Cömert, ""COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches,"" Comput. Biol. Med., vol. 121, Jun. 2020, Art. no. 103805.; F. Ucar and D. Korkmaz, ""COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images,"" Med. Hypotheses, vol. 140, Jul. 2020, Art. no. 109761.; M. D. Wong, T. Thai, Y. Li, and H. Liu, ""The role of chest computed tomography in the management of COVID-19: A review of results and recommendations,"" Exp. Biol. Med., vol. 245, no. 13, pp. 1096-1103, Jul. 2020.; X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, L. Yu, and Q. Ni, ""A deep learning system to screen novel coronavirus disease 2019 pneumonia,"" Engineering, vol. 6, no. 10, pp. 1122-1129, Oct. 2020.; A. Mosavi, S. Ardabili, and A. R. Várkonyi-Kóczy, ""List of deep learning models,"" in Engineering for Sustainable Future, vol. 101, A. R. Várkonyi-Kóczy, Ed. Cham, Switzerland: Springer, Jan. 2020, pp. 202-214.","J. Chicaiza; Departamento de Ciencias de la Computación y Electrónica, Universidad Técnica Particular de Loja, Loja, 110105, Ecuador; email: jachicaiza@utpl.edu.ec","","","","Institute of Electrical and Electronics Engineers Inc.","","","","","","21693536","","","","English","IEEE Access","Article","Final","All Open Access; Gold Open Access; Green Open Access","Scopus","2-s2.0-85126326388"
Autores | Chicaiza, Janneth (56535509300); Villota, Stephany D. (57039217000); Vinueza-Naranjo, Paola G. (57192924899); Rumipamba-Zambrano, Ruben (57191039229) |
Año | 2022 |
DOI | 10.1109/ACCESS.2022.3159025 |
Fuente | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126326388&doi=10.1109%2fACCESS.2022.3159025&partnerID=40&md5=e59260ae9cf7597088ff5fea6e0d231e |
Afiliaciones | Departamento de Ciencias de la Computación y Electrónica, Universidad Técnica Particular de Loja, Loja, 110105, Ecuador; Gestión de Investigación, Desarrollo e Innovación, Instituto Nacional de Investigación en Salud Pública, Quito, 170136, Ecuador; Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba, 060108, Ecuador; Corporación Nacional de Telecomunicaciones – Cnt E.P., Quito, 170528, Ecuador; Universidad Ecotec, Guayas, Samborondn, 092302, Ecuador |
Tipo de acceso abierto | All Open Access; Gold Open Access; Green Open Access |
Referencia | Scopus |
Artículo obtenido de: | Scopus |