Artículo

Contribution of Deep-Learning Techniques Toward Fighting COVID-19: A Bibliometric Analysis of Scholarly Production During 2020

Resumen

COVID-19 has dramatically affected various aspects of human society with worldwide repercussions. Firstly, a serious public health issue has been generated, resulting in millions of deaths. Also, the global economy, social coexistence, psychological status, mental health, and the human-environment relationship/dynamics have been seriously affected. Indeed, abrupt changes in our daily lives have been enforced, starting with a mandatory quarantine and the application of biosafety measures. Due to the magnitude of these effects, research efforts from different fields were rapidly concentrated around the current pandemic to mitigate its impact. Among these fields, Artificial Intelligence (AI) and Deep Learning (DL) have supported many research papers to help combat COVID-19. The present work addresses a bibliometric analysis of this scholarly production during 2020. Specifically, we analyse quantitative and qualitative indicators that give us insights into the factors that have allowed papers to reach a significant impact on traditional metrics and alternative ones registered in social networks, digital mainstream media, and public policy documents. In this regard, we study the correlations between these different metrics and attributes. Finally, we analyze how the last DL advances have been exploited in the context of the COVID-19 situation. © 2013 IEEE.
Muñoz-Estrada, Gloria Katty (57939356900); Chumpitaz Caycho, Hugo Eladio (57760187800); Barja-Ore, John (58071600700); Valverde-Espinoza, Natalia (57222604748); Verde-Vargas, Liliana (57940384500); Mayta-Tovalino, Frank (57188805534)
Bibliometric analysis of the world scientific production on the flipped classroom in medical education; [Análisis bibliométrico de la producción científica mundial sobre el aula invertida en la educación médica]
2022
10.1016/j.edumed.2022.100758
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140481164&doi=10.1016%2fj.edumed.2022.100758&partnerID=40&md5=a48701a1aeb18af16d1a9035df97daa0
Escuela de Posgrado, Unversidad Cesar Vallejo, Lima, Peru; Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte, Lima, Peru; Dirección de Investigación, Universidad Continental, Huancayo, Peru; Departamento Académico, Facultad de Ciencias Empresariales, Universidad Nacional de Educación «Enrique Guzmán y Valle», Lima, Peru; Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Peru
All Open Access; Gold Open Access
Scopus
Artículo obtenido de:
Scopus
0 0 votos
Califica el artículo