Artículo
Bibliometric Analysis of Groundwater’s Life Cycle Assessment Research
Resumen
","
"Authors","Author full names","Author(s) ID","Titles","Year","Source title","Volume","Issue","Art. No.","Page start","Page end","Page count","DOI","Cited by","Link","Affiliations","Authors with affiliations","Abstract","Indexed Keywords","Author Keywords","Molecular Sequence Numbers","Chemicals/CAS","Funding Details","Funding Texts","References","Correspondence Address","Editors","Tradenames","Manufacturers","Publisher","Conference name","Conference code","Conference location","Conference date","Sponsors","ISSN","ISBN","CODEN","PubMed ID","Language of Original Document","Abbreviated Source Title","Document Type","Publication Stage","Open Access","Source","EID"
"Herrera-Franco G.; Carrión-Mero P.; Montalván-Burbano N.; Mora-Frank C.; Berrezueta E.","Herrera-Franco, Gricelda (57212546828); Carrión-Mero, Paúl (57208038096); Montalván-Burbano, Néstor (57210814655); Mora-Frank, Carlos (57216865424); Berrezueta, Edgar (23007383200)","57212546828; 57208038096; 57210814655; 57216865424; 23007383200","Bibliometric Analysis of Groundwater’s Life Cycle Assessment Research","2022","Water (Switzerland)","14","7","1082","","","","10.3390/w14071082","6","https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128338875&doi=10.3390%2fw14071082&partnerID=40&md5=4a66094020184931155000a0e9ebbecb","Facultad de Ciencias de La Ingeniería, Universidad Estatal Península de Santa Elena (UPSE), Avda. Principal La Libertad-Santa Elena, La Libertad, 240204, Ecuador; Geo-Recursos y Aplicaciones GIGA, ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090112, Ecuador; Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Via Perimetral, Guayaquil, 090112, Ecuador; Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo, ESPOL Polytechnic University, Km 30.5 Vía Perimetral, Guayaquil, 090112, Ecuador; Business and Economy Department, University of Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, Almeria, 04120, Spain; Departamento de Recursos para la Transición Ecológica, Instituto Geológico y Minero de España (IGME, CSIC), Oviedo, 33005, Spain","Herrera-Franco G., Facultad de Ciencias de La Ingeniería, Universidad Estatal Península de Santa Elena (UPSE), Avda. Principal La Libertad-Santa Elena, La Libertad, 240204, Ecuador, Geo-Recursos y Aplicaciones GIGA, ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090112, Ecuador; Carrión-Mero P., Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Via Perimetral, Guayaquil, 090112, Ecuador, Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo, ESPOL Polytechnic University, Km 30.5 Vía Perimetral, Guayaquil, 090112, Ecuador; Montalván-Burbano N., Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Via Perimetral, Guayaquil, 090112, Ecuador, Business and Economy Department, University of Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, Almeria, 04120, Spain; Mora-Frank C., Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Via Perimetral, Guayaquil, 090112, Ecuador; Berrezueta E., Departamento de Recursos para la Transición Ecológica, Instituto Geológico y Minero de España (IGME, CSIC), Oviedo, 33005, Spain","Groundwater is an important water resource that accounts for 30% of the world’s freshwater. 97% of this extracted groundwater is for drinking and human use. Due to anthropogenic activities, this resource is affected and, consequently, its life cycle is modified, changing its natural state. This paper aims to analyse the scientific production that deals with the study of groundwater’s Life Cycle Assessment (LCA), using bibliometric methods. Thus, it contributes to the evolution of knowledge of this resource in terms of its use (environmental, economic and social). The methodological process includes: (i) selection and analysis of search topics in the Scopus and Web of Science (WoS) databases; (ii) application of Bibliometrix and Visualisation of Similarity Viewer (VOSviewer) software to the data collected; (iii) scientific structure of the relation of the topics groundwater and life cycle, considering programme lines and relations in their sub-themes; (iv) literature review of Author keywords. A total of 780 papers were selected, 306 being from Scopus, 158 from WoS and 316 published in both databases. The time evolution of the analysed data (publications) indicates that groundwater LCA studies have seen exponential growth (between 1983 and 2021). In addition, it has three development periods: introduction (years between 1983 and 2001), growth (between 2002 and 2011) and maturation (between 2012 and 2021). At the country level (origin of contributions authors), the USA dominates the total scientific production with 24.7%, followed by Denmark with 12.8% and 10.3% for China. Among the main topics of study associated with LCA are those focused on: the proposal of remediation methods, the application and development of technologies and the use of water resources by the urban community. This study allows establishing new trends in agricultural development issues about irrigation efficiency, wastewater reuse, mining and treatment, climate change in a circular economy scheme related to sustainability and life cycle assessment. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.","China; Denmark; United States; Application programs; Aquifers; Climate change; Groundwater resources; Potable water; Sustainable development; Wastewater reclamation; Wastewater treatment; Water conservation; Anthropogenic activity; Aquifer; Bibliometrics analysis; Co-occurrence analysis; Fresh Water; Human use; Lifecycle; Scientometric analysis; Waters resources; Web of Science; agricultural development; aquifer; bibliography; life cycle analysis; resource management; sustainability; water resource; Life cycle","aquifer; co-occurrence analysis; lifecycles; scientometric analysis; sustainability","","","ESPOL Polytechnic University; IGME; Red Minería XXI, (407310RT0402); Siembra y Cosecha del Agua en Áreas Naturales Protegidas, (307AC0318, 419RT0577); UPSE, (91870000.0000.381017)","The preparation of this study counted with the collaboration of various scientific research projects, as the “Peninsula Santa Elena Geopark Project” of the UPSE University project (Universidad Estatal Península de Santa Elena) with code No. 91870000.0000.381017. Also, to projects of the ESPOL Polytechnic University like “Registry of geological and mining heritage and its impact on the defense and preservation of geodiversity in Ecuador” with code CIPAT-01-2018, and “Siembra y Cosecha del Agua en Áreas Naturales Protegidas” of CYTED programme’s International Network with code 419RT0577. In addition, we are grateful to the international project ‘Ibero-American mineral routes and territorial planning: an integral factor for the sustainable development of society’ (the acronym in Spanish is RUMYS) with code 307AC0318. This work is based on previous initiatives sponsored by the Red Minería XXI (CYTED: 407310RT0402, IGME). We would also like to thank the editorial office for the editorial handling and two anonymous reviewers for their constructive comments and corrections.","Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human Appropriation of Renewable Fresh Water. Science 1996, 271, 785–788. [CrossRef]; Burek, P.; Satoh, Y.; Fischer, G.; Kahil, M.T.; Scherzer, A.; Tramberend, S.; Nava, L.F.; Wada, Y.; Eisner, S.; Flörke, M.; et al. Water Futures and Solution. Fast Track Initiative; IIASA: Laxenburg, Austria, 2016.; Brown, L.E.; Mitchell, G.; Holden, J.; Folkard, A.; Wright, N.; Beharry-Borg, N.; Berry, G.; Brierley, B.; Chapman, P.; Clarke, S.J. Priority water research questions as determined by UK practitioners and policy makers. Sci. Total Environ. 2010, 409, 256–266. [CrossRef] [PubMed]; Zhang, S.; Fan, W.; Yi, Y.; Zhao, Y.; Liu, J. Evaluation method for regional water cycle health based on nature-society water cycle theory. J. Hydrol. 2017, 551, 352–364. [CrossRef]; Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [CrossRef]; Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [CrossRef]; Koehnken, L.; Rintoul, M.S.; Goichot, M.; Tickner, D.; Loftus, A.; Acreman, M.C. Impacts of riverine sand mining on freshwater ecosystems: A review of the scientific evidence and guidance for future research. River Res. Appl. 2020, 36, 362–370. [CrossRef]; Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A review of water scarcity and drought indexes in water resources planning and management. J. Hydrol. 2015, 527, 482–493. [CrossRef]; Díaz, M.E.; Figueroa, R.; Alonso, M.L.S.; Vidal-Abarca, M.R. Exploring the complex relations between water resources and social indicators: The Biobío Basin (Chile). Ecosyst. Serv. 2018, 31, 84–92. [CrossRef]; Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. The worldwide research trends on water ecosystem services. Ecol. Indic. 2019, 99, 310–323. [CrossRef]; Carrión-Mero, P.; Montalván, F.J.; Morante-Carballo, F.; Heredia, J.; Elorza, F.J.; Solórzano, J.; Aguilera, H. Hydrochemical and Isotopic Characterization of the Waters of the Manglaralto River Basin (Ecuador) to Contribute to the Management of the Coastal Aquifer. Water 2021, 13, 537. [CrossRef]; Lachassagne, P. What Is Groundwater? How to Manage and Protect Groundwater Resources. Ann. Nutr. Metab. 2020, 76, 17–24. [CrossRef]; Wilson, L.G. Artificial Ground-Water Recharge—A Review of Methods and Problems; University of Arizona: Tucson, AZ, USA, 1979.; Yao, Y.; Zheng, C.; Andrews, C.B.; Scanlon, B.R.; Kuang, X.; Zeng, Z.; Jeong, S.; Lancia, M.; Wu, Y.; Li, G. Role of Groundwater in Sustaining Northern Himalayan Rivers. Geophys. Res. Lett. 2021, 48, e2020GL092354. [CrossRef]; Freshwater (Lakes and Rivers) and the Water Cycle. Available online: https://www.usgs.gov/special-topic/water-science-school/science/freshwater-lakes-and-rivers-and-water-cycle?qt-science:center_objects=0#qt-science:center_objects (accessed on 10 October 2021).; Pérez Hoyos, I.; Krakauer, N.; Khanbilvardi, R.; Armstrong, R. A Review of Advances in the Identification and Characterization of Groundwater Dependent Ecosystems Using Geospatial Technologies. Geosciences 2016, 6, 17. [CrossRef]; Priestley, S.C.; Shand, P.; Love, A.J.; Crossey, L.J.; Karlstrom, K.E.; Keppel, M.N.; Wohling, D.L.; Rousseau-Gueutin, P. Hydrochemical variations of groundwater and spring discharge of the western Great Artesian Basin, Australia: Implications for regional groundwater flow. Hydrogeol. J. 2020, 28, 263–278. [CrossRef]; Green, P.A.; Vörösmarty, C.J.; Harrison, I.; Farrell, T.; Sáenz, L.; Fekete, B.M. Freshwater ecosystem services supporting humans: Pivoting from water crisis to water solutions. Glob. Environ. Change 2015, 34, 108–118. [CrossRef]; Hamilton, A.J.; Stagnitti, F.; Xiong, X.; Kreidl, S.L.; Benke, K.K.; Maher, P. Wastewater Irrigation: The State of Play. Vadose Zone J. 2007, 6, 823–840. [CrossRef]; Herrera-Franco, G.; Alvarado-Macancela, N.; Gavín-Quinchuela, T.; Carrión-Mero, P. Participatory socio-ecological system: Manglaralto-Santa Elena, Ecuador. Geol. Ecol. Landsc. 2018, 2, 303–310. [CrossRef]; Aldaya, M.M.; Custodio, E.; Llamas, R.; Fernández, M.F.; García, J.; Ródenas, M.Á. An academic analysis with recommendations for water management and planning at the basin scale: A review of water planning in the Segura River Basin. Sci. Total Environ. 2019, 662, 755–768. [CrossRef]; Herrera-Franco, G.; Carrión-Mero, P.; Aguilar-Aguilar, M.; Morante-Carballo, F.; Jaya-Montalvo, M.; Morillo-Balsera, M.C. Groundwater Resilience Assessment in a Communal Coastal Aquifer System. The Case of Manglaralto in Santa Elena, Ecuador. Sustainability 2020, 12, 8290. [CrossRef]; Jarvis, W.T. Integrating Groundwater Boundary Matters into Catchment Management. In The Dilemma of Boundaries; Springer: Tokyo, Japan, 2012; pp. 161–176.; Manning, A.H.; Morrison, J.M.; Wanty, R.B.; Mills, C.T. Using stream-side groundwater discharge for geochemical exploration in mountainous terrain. J. Geochem. Explor. 2020, 209, 106415. [CrossRef]; Leybourne, M.I.; Cameron, E.M. Groundwater in geochemical exploration. Geochem. Explor. Environ. Anal. 2010, 10, 99–118. [CrossRef]; Teixeira, J.; Chaminé, H.I.; Carvalho, J.M.; Pérez-Alberti, A.; Rocha, F. Hydrogeomorphological mapping as a tool in groundwater exploration. J. Maps 2013, 9, 263–273. [CrossRef]; Khorrami, M.; Malekmohammadi, B. Effects of excessive water extraction on groundwater ecosystem services: Vulnerability assessments using biophysical approaches. Sci. Total Environ. 2021, 799, 149304. [CrossRef]; Wang, Y.; Liu, H.; Chen, C.; Kuang, Y.; Song, J.; Xie, H.; Jia, C.; Kronthal, S.; Xu, X.; He, S.; et al. All Natural, High Efficient Groundwater Extraction via Solar Steam/Vapor Generation. Adv. Sustain. Syst. 2019, 3, 1800055. [CrossRef]; Arefayne Shishaye, H.; Abdi, S. Groundwater Exploration for Water Well Site Locations Using Geophysical Survey Methods. Hydrol. Curr. Res. 2016, 7, 1. [CrossRef]; Udo de Haes, H.A.; Van Rooijen, M. Life Cycle Approaches—The Road from Analysis to Practice, 67th ed.; UNEP/SETAC Life Cycle Initiative: Paris, France, 2005.; Ma, F.C.; Wang, J.C.; Zhang, Y.T. The knowledge map of domestic life cycle theory studies—based on strategic diagram and conceptual network methods. Inf. Sci. 2010, 4, 334–340.; Zhu, X.F. Study on life cycle methodology. Stud. Sci. Sci. 2004, 22, 566–571.; Ayres, R.U. On the life cycle metaphor: Where ecology and economics diverge. Ecol. Econ. 2004, 48, 425–438. [CrossRef]; Huxley, J. The Control of the Life-Cycle; Duckworth & CO.: London, UK, 1921.; Clark, R.C. The Demonstration Laboratory for Biology. Am. Biol. Teach. 1940, 3, 95–98. [CrossRef]; O’Rand, A.M.; Krecker, M.L. Concepts of the Life Cycle: Their History, Meanings, and Uses in the Social Sciences. Annu. Rev. Sociol. 1990, 16, 241–262. [CrossRef]; Ditsele, O.; Awuah-Offei, K. Effect of mine characteristics on life cycle impacts of US surface coal mining. Int. J. Life Cycle Assess. 2012, 17, 287–294. [CrossRef]; Sala, S.; Farioli, F.; Zamagni, A. Progress in sustainability science: Lessons learnt from current methodologies for sustainability assessment: Part 1. Int. J. Life Cycle Assess. 2013, 18, 1653–1672. [CrossRef]; Koroneos, C.J.; Achillas, C.; Moussiopoulos, N.; Nanaki, E.A. Life Cycle Thinking in the Use of Natural Resources. Open Environ. Sci. 2013, 7, 1–6. [CrossRef]; Konikow, L.F.; Bredehoeft, J.D. Modeling flow and chemical quality changes in an irrigated stream-aquifer system. Water Resour. Res. 1974, 10, 546–562. [CrossRef]; Saetta, D.; Ishii, S.K.L.; Pine, W.E.; Boyer, T.H. Case Study and Life Cycle Assessment of a Coastal Utility Facing Saltwater Intrusion. J. Am. Water Works Assoc. 2015, 107, E543–E558. [CrossRef]; Villacorte, L.O.; Tabatabai, S.A.A.; Anderson, D.M.; Amy, G.L.; Schippers, J.C.; Kennedy, M.D. Seawater reverse osmosis desalination and (harmful) algal blooms. Desalination 2015, 360, 61–80. [CrossRef]; Xin, J.; Liu, Y.; Chen, F.; Duan, Y.; Wei, G.; Zheng, X.; Li, M. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system. Water Res. 2019, 165, 114977. [CrossRef] [PubMed]; Juntakut, P.; Haacker, E.M.K.; Snow, D.D.; Ray, C. Risk and Cost Assessment of Nitrate Contamination in Domestic Wells. Water 2020, 12, 428. [CrossRef]; Feng, H.; Zhou, J.; Chai, B.; Zhou, A.; Li, J.; Zhu, H.; Chen, H.; Su, D. Groundwater environmental risk assessment of abandoned coal mine in each phase of the mine life cycle: A case study of Hongshan coal mine, North China. Environ. Sci. Pollut. Res. 2020, 27, 42001–42021. [CrossRef] [PubMed]; Elumalai, V.; Brindha, K.; Lakshmanan, E. Human Exposure Risk Assessment Due to Heavy Metals in Groundwater by Pollution Index and Multivariate Statistical Methods: A Case Study from South Africa. Water 2017, 9, 234. [CrossRef]; Chen, S.; Wu, W.; Hu, K.; Li, W. The effects of land use change and irrigation water resource on nitrate contamination in shallow groundwater at county scale. Ecol. Complex. 2010, 7, 131–138. [CrossRef]; Xin, J.; Wang, Y.; Shen, Z.; Liu, Y.; Wang, H.; Zheng, X. Critical review of measures and decision support tools for groundwater nitrate management: A surface-to-groundwater profile perspective. J. Hydrol. 2021, 598, 126386. [CrossRef]; Sharma, H.D.; Reddy, K.R. Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies; John Wiley & Sons: Edison, NJ, USA, 2004.; Yao, X.; Cao, Y.; Zheng, G.; Devlin, A.T.; Yu, B.; Hou, X.; Tang, S.; Xu, L.; Lu, Y. Use of life cycle assessment and water quality analysis to evaluate the environmental impacts of the bioremediation of polluted water. Sci. Total Environ. 2021, 761, 143260. [CrossRef]; Lemming, G.; Hauschild, M.Z.; Bjerg, P.L. Life cycle assessment of soil and groundwater remediation technologies: Literature review. Int. J. Life Cycle Assess. 2010, 15, 115–127. [CrossRef]; Awad, H.; Gar Alalm, M.; El-Etriby, H.K. Environmental and cost life cycle assessment of different alternatives for improvement of wastewater treatment plants in developing countries. Sci. Total Environ. 2019, 660, 57–68. [CrossRef] [PubMed]; Schramm, A.; Richter, F.; Götze, U. Life Cycle Sustainability Assessment for manufacturing—Analysis of existing approaches. Procedia Manuf. 2020, 43, 712–719. [CrossRef]; Bhakar, P.; Singh, A.P. Life Cycle Assessment of Groundwater Supply System in a Hyper-arid Region of India. Procedia CIRP 2018, 69, 603–608. [CrossRef]; Igos, E.; Dalle, A.; Tiruta-Barna, L.; Benetto, E.; Baudin, I.; Mery, Y. Life Cycle Assessment of water treatment: What is the contribution of infrastructure and operation at unit process level? J. Clean. Prod. 2014, 65, 424–431. [CrossRef]; Akhoundi, A.; Nazif, S. Sustainability assessment of wastewater reuse alternatives using the evidential reasoning approach. J. Clean. Prod. 2018, 195, 1350–1376. [CrossRef]; Pradeleix, L.; Bouarfa, S.; Bellon-Maurel, V.; Roux, P. Assessing Environmental Impacts of Groundwater Irrigation Using the Life Cycle Assessment Method: Application to a Tunisian Arid Region. Irrig. Drain. 2020, 69, 117–125. [CrossRef]; Northey, S.A.; Mudd, G.M.; Saarivuori, E.; Wessman-Jääskeläinen, H.; Haque, N. Water footprinting and mining: Where are the limitations and opportunities? J. Clean. Prod. 2016, 135, 1098–1116. [CrossRef]; Lee, M.; Keller, A.A.; Chiang, P.-C.; Den, W.; Wang, H.; Hou, C.-H.; Wu, J.; Wang, X.; Yan, J. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Appl. Energy 2017, 205, 589–601. [CrossRef]; Dzikowski, P. A bibliometric analysis of born global firms. J. Bus. Res. 2018, 85, 281–294. [CrossRef]; Do Prado, J.W.; de Castro Alcântara, V.; de Melo Carvalho, F.; Vieira, K.C.; Machado, L.K.C.; Tonelli, D.F. Multivariate analysis of credit risk and bankruptcy research data: A bibliometric study involving different knowledge fields (1968–2014). Scientometrics 2016, 106, 1007–1029. [CrossRef]; Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [CrossRef]; Durán-Sánchez, A.; Álvarez-García, J.; González-Vázquez, E.; Río-Rama, D.; de la Cruz, M. Wastewater Management: Bibliometric Analysis of Scientific Literature. Water 2020, 12, 2963. [CrossRef]; Del Río-Rama, M.D.L.C.; Maldonado-Erazo, C.P.; Álvarez-García, J.; Durán-Sánchez, A. Cultural and Natural Resources in Tourism Island: Bibliometric Mapping. Sustainability 2020, 12, 724. [CrossRef]; Pizzi, S.; Caputo, A.; Corvino, A.; Venturelli, A. Management research and the UN sustainable development goals (SDGs): A bibliometric investigation and systematic review. J. Clean. Prod. 2020, 276, 124033. [CrossRef]; De Sousa, F.D.B. Management of plastic waste: A bibliometric mapping and analysis. Waste Manag. Res. 2021, 39, 664–678. [CrossRef]; Cancino, C.; Merigó, J.M.; Coronado, F.; Dessouky, Y.; Dessouky, M. Forty years of Computers & Industrial Engineering: A bibliometric analysis. Comput. Ind. Eng. 2017, 113, 614–629. [CrossRef]; Mei, Y.; Ma, T.; Su, R. How marketized is China’s natural gas industry? A bibliometric analysis. J. Clean. Prod. 2021, 306, 127289. [CrossRef]; Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020, 1, 377–386. [CrossRef]; Archambault, É.; Campbell, D.; Gingras, Y.; Larivière, V. Comparing bibliometric statistics obtained from the Web of Science and Scopus. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 1320–1326. [CrossRef]; Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871–906. [CrossRef]; Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. De La Inf. 2020, 29, 1–20. [CrossRef]; Xie, H.; Zhang, Y.; Duan, K. Evolutionary overview of urban expansion based on bibliometric analysis in Web of Science from 1990 to 2019. Habitat Int. 2020, 95, 102100. [CrossRef]; Abad-Segura, E.; Morales, M.E.; Cortés-García, F.J.; Belmonte-Ureña, L.J. Industrial Processes Management for a Sustainable Society: Global Research Analysis. Processes 2020, 8, 631. [CrossRef]; Sabando-Vera, D.; Yonfa-Medranda, M.; Montalván-Burbano, N.; Albors-Garrigos, J.; Parrales-Guerrero, K. Worldwide Research on Open Innovation in SMEs. J. Open Innov. Technol. Mark. Complex. 2022, 8, 20. [CrossRef]; Abad-Segura, E.; de la Fuente, A.B.; González-Zamar, M.-D.; Belmonte-Ureña, L.J. Effects of Circular Economy Policies on the Environment and Sustainable Growth: Worldwide Research. Sustainability 2020, 12, 5792. [CrossRef]; Keathley-Herring, H.; Van Aken, E.; Gonzalez-Aleu, F.; Deschamps, F.; Letens, G.; Orlandini, P.C. Assessing the maturity of a research area: Bibliometric review and proposed framework. Scientometrics 2016, 109, 927–951. [CrossRef]; Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Jaya-Montalvo, M.; Gurumendi-Noriega, M. Worldwide Research on Geoparks through Bibliometric Analysis. Sustainability 2021, 13, 1175. [CrossRef]; Lara-Rodríguez, J.S.; Rojas-Contreras, C.; Duque Oliva, E.J. Discovering Emerging Research Topics for Brand Personality: A Bibliometric Analysis. Australas. Mark. J. 2019, 27, 261–272. [CrossRef]; Wu, X.; Chen, X.; Zhan, F.B.; Hong, S. Global research trends in landslides during 1991–2014: A bibliometric analysis. Landslides 2015, 12, 1215–1226. [CrossRef]; Van Eck, N.J.; Waltman, L. Accuracy of citation data in Web of Science and Scopus. In Proceedings of the 16th International Conference of the International Society for Scientometrics and Informetrics, Wuhan, China, 16–20 October 2019; pp. 1087–1092.; Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [CrossRef]; Rodríguez-Soler, R.; Uribe-Toril, J.; De Pablo Valenciano, J. Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool. Land Use Policy 2020, 97, 104787. [CrossRef]; Aria, M.; Misuraca, M.; Spano, M. Mapping the evolution of social research and data science on 30 years of Social Indicators Research. Soc. Indic. Res. 2020, 149, 803–831. [CrossRef]; Palácios, H.; de Almeida, M.H.; Sousa, M.J. A bibliometric analysis of trust in the field of hospitality and tourism. Int. J. Hosp. Manag. 2021, 95, 102944. [CrossRef]; Derviş, H. Bibliometric Analysis using Bibliometrix an R Package. J. Scientometr. Res. 2020, 8, 156–160. [CrossRef]; Van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [CrossRef] [PubMed]; Van Eck, N.J.; Waltman, L.; Dekker, R.; van den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [CrossRef]; Alshehhi, A.; Nobanee, H.; Khare, N. The Impact of Sustainability Practices on Corporate Financial Performance: Literature Trends and Future Research Potential. Sustainability 2018, 10, 494. [CrossRef]; Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P. Bravo-Montero, Lady Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. [CrossRef]; Abad-Segura, E.; Cortés-García, F.J.; Belmonte-Ureña, L.J. The Sustainable Approach to Corporate Social Responsibility: A Global Analysis and Future Trends. Sustainability 2019, 11, 5382. [CrossRef]; Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [CrossRef]; De Solla Price, D.J. Little Science, Big Science; Columbia University Press: New York, NY, USA, 1963; ISBN 9780231885751.; Tzschaschel, G. Seasonal abundance of psammon rotifers. Hydrobiologia 1983, 104, 275–278. [CrossRef]; Boon, P.J. The impact of river regulation on invertebrate communities in the U.K. Regul. Rivers Res. Manag. 1988, 2, 389–409. [CrossRef]; Hale, D.R.; Nyer, E.K. Removal of phenol from a brine aquifer 2 years of operation. In Environmental Engineering, Proceedings of the 1986 Specialty Conference, Cincinnati, OH, USA, 8–10 July 1986; American Society of Civil Engineers: New York, NY, USA, 1986; p. 7.; McNutt, J.L. Physical chemistry considerations in evaluating RO vs. EDR desalination of brackish groundwaters. In Proceedings of the Technical Proceedings—Annual Conference and Trade Fair of the Water Supply Improvement Association; Water Supply Improvement Association: Topsfield, MA, USA, 1984; p. 16.; Berg, M.B.; Hellenthal, R.A. Life Histories and Growth of Lotic Chironomids (Diptera: Chironomidae). Ann. Entomol. Soc. Am. 1992, 85, 578–589. [CrossRef]; Haro, R.J.; Edley, K.; Wiley, M.J. Body size and sex ratio in emergent stonefly nymphs (Isogenoides olivaceus: Perlodidae): Variation between cohorts and populations. Can. J. Zool. 1994, 72, 1371–1375. [CrossRef]; Robinson, C.T.; Reed, L.M.; Minshall, G.W. Influence of Flow Regime on Life History, Production, and Genetic Structure of Baetis tricaudatus (Ephemeroptera) and Hesperoperla pacifica (Plecoptera). J. North Am. Benthol. Soc. 1992, 11, 278–289. [CrossRef]; Brainard, J.; Lovett, A.; Parfitt, J. Assessing hazardous waste transport risks using a GIS. Int. J. Geogr. Inf. Syst. 1996, 10, 831–849. [CrossRef]; Singh, J.B.; Foster, G.; Hunt, A.W. Representative operating problems of commercial ground-source and groundwater-source heat pumps. Ashrae Trans. 2000, 106, 561.; Twardowska, I.; Singh, G.; Tripathi, P.S.M. Problems of monitoring and long-term risk assessment for ground water from high-volume solid waste sites in industrialized and developing countries. In Environmental Monitoring and Remediation Technologies II; Vo-Dinh, T., Spellicy, R.L., Eds.; SPIE: Boston, MA, USA, 1999; pp. 344–355.; Baitz, M.; Kreissig, J.; Wolf, M.-A. Methode zur Integration der Naturraum-Inanspruchnahme in Ökobilanzen. Forstwiss. Cent. Ver. Mit Tharandter Forstl. Jahrb. 2000, 119, 128–149. [CrossRef]; Vignes, R.P. Use limited life-cycle analysis for environmental decision-making. Chem. Eng. Prog. 2001, 97, 40–54.; Felix, F.; Fraaij, A.L.A.; Hendriks, C.F. Evaluation of a decision support system for the useful application of hazardous wastes with means of immobilisation-techniques. Mater. Struct. 2003, 36, 599–603. [CrossRef]; Geisler, G.; Hellweg, S.; Liechti, S.; Hungerbühler, K. Variability Assessment of Groundwater Exposure to Pesticides and Its Consideration in Life-Cycle Assessment. Environ. Sci. Technol. 2004, 38, 4457–4464. [CrossRef]; Ghazi, M.; Quaranta, G.; Duplay, J.; Hadjamor, R.; Khodja, M.; Amar, H.A.; Kessaissia, Z. Life-Cycle Impact Assessment of oil drilling mud system in Algerian arid area. Resour. Conserv. Recycl. 2011, 55, 1222–1231. [CrossRef]; Mak, M.S.H.; Lo, I.M.C. Environmental Life Cycle Assessment of Permeable Reactive Barriers: Effects of Construction Methods, Reactive Materials and Groundwater Constituents. Environ. Sci. Technol. 2011, 45, 10148–10154. [CrossRef] [PubMed]; Heuvelmans, G.; Garcia-Qujano, J.F.; Muys, B.; Feyen, J.; Coppin, P. Modelling the water balance with SWAT as part of the land use impact evaluation in a life cycle study of CO2 emission reduction scenarios. Hydrol. Process. 2005, 19, 729–748. [CrossRef]; Hansen, T.L.; Bhander, G.S.; Christensen, T.H.; Bruun, S.; Jensen, L.S. Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (Easewaste). Waste Manag. Res. 2006, 24, 153–166. [CrossRef]; Godin, J.; Ménard, J.-F.; Hains, S.; Deschênes, L.; Samson, R. Combined Use of Life Cycle Assessment and Groundwater Transport Modeling to Support Contaminated Site Management. Hum. Ecol. Risk Assess. 2004, 10, 1099–1116. [CrossRef]; Bayer, P.; Finkel, M. Life cycle assessment of active and passive groundwater remediation technologies. J. Contam. Hydrol. 2006, 83, 171–199. [CrossRef]; Lemming, G.; Chambon, J.C.; Binning, P.J.; Bjerg, P.L. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation. J. Environ. Manag. 2012, 112, 392–403. [CrossRef] [PubMed]; Fisher, A. Life-cycle assessment of in situ thermal remediation. Remediat. J. 2012, 22, 75–92. [CrossRef]; Divine, C.E.; Wright, J.; Crimi, M.; Devlin, J.F.; Lubrecht, M.; Wang, J.; McDonough, J.; Kladias, M.; Hinkle, J.; Cormican, A.; et al. Field Demonstration of the Horizontal Treatment Well (HRXWell (R)) for PassiveIn SituRemediation. Groundw. Monit. Remediat. 2020, 40, 42–54. [CrossRef]; Mayo, A.L.; Nelson, S.T.; McBride, J.H.; Mease, C.D.; Tingey, D.G.; Aubrey, D. A combined geological, hydrochemical, and geophysical approach to understanding a disease contamination hazard in groundwaters at a state fish hatchery. Nat. Hazards 2013, 69, 545–571. [CrossRef]; Ilyashuk, B.P.; Ilyashuk, E.A.; Psenner, R.; Tessadri, R.; Koinig, K.A. Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes. Glob. Change Biol. 2018, 24, 1548–1562. [CrossRef] [PubMed]; Salih, H.H.; Li, J.; Kaplan, R.; Dastgheib, S.A. Life cycle assessment of treatment and handling options for a highly saline brine extracted from a potential CO2 storage site. Water Res. 2017, 122, 419–430. [CrossRef] [PubMed]; Martínez, N.M.; Basallote, M.D.; Meyer, A.; Cánovas, C.R.; Macías, F.; Schneider, P. Life cycle assessment of a passive remediation system for acid mine drainage: Towards more sustainable mining activity. J. Clean. Prod. 2019, 211, 1100–1111. [CrossRef]; Nunes, L.M.; Gomes, H.I.; Teixeira, M.R.; Dias-Ferreira, C.; Ribeiro, A.B. Life Cycle Assessment of Soil and Groundwater Remediation. In Electrokinetics Across Disciplines and Continents; Springer International Publishing: Cham, Switzerland, 2016; pp. 173–202.; Bhakar, V.; Kumar, D.N.S.H.; Sai, N.K.; Sangwan, K.S.; Raghuvanshi, S. Life Cycle Assessment of Filtration Systems of Reverse Osmosis Units: A Case Study of a University Campus. Procedia CIRP 2016, 40, 268–273. [CrossRef]; Smythers, A.L.; Perry, N.L.; Kolling, D.R.J. Chlorella vulgaris bioaccumulates excess manganese up to 55× under photomixotrophic conditions. Algal Res. 2019, 43, 101641. [CrossRef]; McCarthy, B.; Anex, R.; Wang, Y.; Kendall, A.D.; Anctil, A.; Haacker, E.M.K.; Hyndman, D.W. Trends in Water Use, Energy Consumption, and Carbon Emissions from Irrigation: Role of Shifting Technologies and Energy Sources. Environ. Sci. Technol. 2020, 54, 15329–15337. [CrossRef] [PubMed]; Verones, F.; Bartl, K.; Pfister, S.; Jiménez Vílchez, R.; Hellweg, S. Modeling the Local Biodiversity Impacts of Agricultural Water Use: Case Study of a Wetland in the Coastal Arid Area of Peru. Environ. Sci. Technol. 2012, 46, 4966–4974. [CrossRef] [PubMed]; Miller-Robbie, L.; Ramaswami, A.; Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: Exploring the food, energy, water, and health nexus in Hyderabad, India. Environ. Res. Lett. 2017, 12, 075005. [CrossRef]; Schwab, O.; Bayer, P.; Juraske, R.; Verones, F.; Hellweg, S. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions. Waste Manag. 2014, 34, 1884–1896. [CrossRef] [PubMed]; Faragò, M.; Brudler, S.; Godskesen, B.; Rygaard, M. An eco-efficiency evaluation of community-scale rainwater and stormwater harvesting in Aarhus, Denmark. J. Clean. Prod. 2019, 219, 601–612. [CrossRef]; Birgisdóttir, H.; Bhander, G.; Hauschild, M.Z.; Christensen, T.H. Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Waste Manag. 2007, 27, S75–S84. [CrossRef] [PubMed]; Verones, F.; Saner, D.; Pfister, S.; Baisero, D.; Rondinini, C.; Hellweg, S. Effects of Consumptive Water Use on Biodiversity in Wetlands of International Importance. Environ. Sci. Technol. 2013, 47, 12248–12257. [CrossRef] [PubMed]; Verones, F.; Pfister, S.; Hellweg, S. Quantifying Area Changes of Internationally Important Wetlands Due to Water Consumption in LCA. Environ. Sci. Technol. 2013, 47, 9799–9807. [CrossRef] [PubMed]; Zhang, X.; Zhang, M.; Liu, Y. One step further to closed water loop: Reclamation of municipal wastewater to high-grade product water. Chin. Sci. Bull. 2020, 65, 1358–1367. [CrossRef]; Pradinaud, C.; Northey, S.; Amor, B.; Bare, J.; Benini, L.; Berger, M.; Boulay, A.-M.; Junqua, G.; Lathuillière, M.J.; Margni, M.; et al. Defining freshwater as a natural resource: A framework linking water use to the area of protection natural resources. Int. J. Life Cycle Assess. 2019, 24, 960–974. [CrossRef]; Gejl, R.N.; Bjerg, P.L.; Henriksen, H.J.; Hauschild, M.Z.; Rasmussen, J.; Rygaard, M. Integrating groundwater stress in life-cycle assessments—An evaluation of water abstraction. J. Environ. Manag. 2018, 222, 112–121. [CrossRef] [PubMed]; Manfredi, S.; Christensen, T.H.; Scharff, H.; Jacobs, J. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE). Waste Manag. Res. 2010, 28, 130–140. [CrossRef] [PubMed]; Niskanen, A.; Manfredi, S.; Christensen, T.H.; Anderson, R. Environmental assessment of Ämmässuo Landfill (Finland) by means of LCA-modelling (EASEWASTE). Waste Manag. Res. 2009, 27, 542–550. [CrossRef] [PubMed]; Sun, X.; Xu, Y.; Liu, Y.; Nai, C.; Dong, L.; Liu, J.; Huang, Q. Evolution of geomembrane degradation and defects in a landfill: Impacts on long-term leachate leakage and groundwater quality. J. Clean. Prod. 2019, 224, 335–345. [CrossRef]; Christensen, P.A.; Anderson, P.A.; Harper, G.D.J.; Lambert, S.M.; Mrozik, W.; Rajaeifar, M.A.; Wise, M.S.; Heidrich, O. Risk management over the life cycle of lithium-ion batteries in electric vehicles. Renew. Sustain. Energy Rev. 2021, 148, 111240. [CrossRef]; Nielsen, M.P.; Yoshida, H.; Raji, S.G.; Scheutz, C.; Jensen, L.S.; Christensen, T.H.; Bruun, S. Deriving Environmental Life Cycle Inventory Factors for Land Application of Garden Waste Products Under Northern European Conditions. Environ. Modeling Assess. 2019, 24, 21–35. [CrossRef]; Christensen, T.H.; Bhander, G.; Lindvall, H.; Larsen, A.W.; Fruergaard, T.; Damgaard, A.; Manfredi, S.; Boldrin, A.; Riber, C.; Hauschild, M. Experience with the use of LCA-modelling (EASEWASTE) in waste management. Waste Manag. Res. 2007, 25, 257–262. [CrossRef] [PubMed]; Godskesen, B.; Hauschild, M.; Rygaard, M.; Zambrano, K.; Albrechtsen, H.-J. Life-cycle and freshwater withdrawal impact assessment of water supply technologies. Water Res. 2013, 47, 2363–2374. [CrossRef] [PubMed]; Jeswani, H.K.; Hellweg, S.; Azapagic, A. Accounting for land use, biodiversity and ecosystem services in life cycle assessment: Impacts of breakfast cereals. Sci. Total Environ. 2018, 645, 51–59. [CrossRef]; Hellweg, S.; Fischer, U.; Hofstetter, T.B.; Hungerbühler, K. Site-dependent fate assessment in LCA: Transport of heavy metals in soil. J. Clean. Prod. 2005, 13, 341–361. [CrossRef]; Verones, F.; Pfister, S.; van Zelm, R.; Hellweg, S. Biodiversity impacts from water consumption on a global scale for use in life cycle assessment. Int. J. Life Cycle Assess. 2017, 22, 1247–1256. [CrossRef]; Pfister, S. Water Use. In Life Cycle Impact Assessment; Springer: Zurich, Switzerland, 2015; pp. 223–245.; Rygaard, M.; Godskesen, B.; Jørgensen, C.; Hoffmann, B. Holistic assessment of a secondary water supply for a new development in Copenhagen, Denmark. Sci. Total Environ. 2014, 497–498, 430–439. [CrossRef]; Rygaard, M.; Binning, P.J.; Albrechtsen, H.-J. Increasing urban water self-sufficiency: New era, new challenges. J. Environ. Manag. 2011, 92, 185–194. [CrossRef] [PubMed]; Montalván-Burbano, N.; Pérez-Valls, M.; Plaza-Úbeda, J. Analysis of scientific production on organizational innovation. Cogent Bus. Manag. 2020, 7, 1745043. [CrossRef]; Prasannamedha, G.; Kumar, P.S. A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective. J. Clean. Prod. 2020, 250, 119553. [CrossRef]; Moore, C.C.S.; Nogueira, A.R.; Kulay, L. Environmental and energy assessment of the substitution of chemical fertilizers for industrial wastes of ethanol production in sugarcane cultivation in Brazil. Int. J. Life Cycle Assess. 2017, 22, 628–643. [CrossRef]; Ihsanullah, I.; Atieh, M.A.; Sajid, M.; Nazal, M.K. Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies. Sci. Total Environ. 2021, 780, 146585. [CrossRef] [PubMed]; Blas, A.; Garrido, A.; Willaarts, B. Evaluating the Water Footprint of the Mediterranean and American Diets. Water 2016, 8, 448. [CrossRef]; Chen, I.-C.; Tsai, Y.-C.; Ma, H.-W. Toward Sustainable Brownfield Redevelopment Using Life-Cycle Thinking. Sustainability 2016, 8, 994. [CrossRef]; Heller, M.C.; Keoleian, G.A. Assessing the sustainability of the US food system: A life cycle perspective. Agric. Syst. 2003, 76, 1007–1041. [CrossRef]; Gross, T.; Breitenmoser, L.; Kumar, S.; Ehrensperger, A.; Wintgens, T.; Hugi, C. Anaerobic digestion of biowaste in Indian municipalities: Effects on energy, fertilizers, water and the local environment. Resour. Conserv. Recycl. 2021, 170, 105569. [CrossRef]; Soenen, C.; Reinbold, V.; Meunier, S.; Cherni, J.A.; Darga, A.; Dessante, P.; Quéval, L. Comparison of Tank and Battery Storages for Photovoltaic Water Pumping. Energies 2021, 14, 2483. [CrossRef]; Giordano, N.; Raymond, J. Alternative and sustainable heat production for drinking water needs in a subarctic climate (Nunavik, Canada): Borehole thermal energy storage to reduce fossil fuel dependency in off-grid communities. Appl. Energy 2019, 252, 113463. [CrossRef]; Türkeli, S.; Kemp, R.; Huang, B.; Bleischwitz, R.; McDowall, W. Circular economy scientific knowledge in the European Union and China: A bibliometric, network and survey analysis (2006–2016). J. Clean. Prod. 2018, 197, 1244–1261. [CrossRef]; Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [CrossRef]; Leão, S.; Roux, P.; Loiseau, E.; Junqua, G.; Rosenbaum, R.K. Operationalisation and application of water supply mix (WSmix) at worldwide scale: How does WSmix influence the environmental profile of water supply for different users? Int. J. Life Cycle Assess. 2019, 24, 2255–2267. [CrossRef]; Mikosch, N.; Berger, M.; Huber, E.; Finkbeiner, M. Assessing local impacts of water use on human health: Evaluation of water footprint models in the Province Punjab, Pakistan. Int. J. Life Cycle Assess. 2021, 26, 1027–1044. [CrossRef]; Raffn, J.; Hauschild, M.Z.; Dalgaard, T.; Djomo, S.N.; Averbuch, B.; Hermansen, J.E. Obligatory inclusion of uncertainty avoids systematic underestimation of Danish pork water use and incentivizes provision of specific inventory data. J. Clean. Prod. 2019, 233, 1355–1365. [CrossRef]; Bayer, P.; Pfister, S.; Hellweg, S. Indirect water management: How we all can participate. In Proceedings of the Symposium JS.3 at the Joint Convention of the International Association of Hydrological Sciences (IAHS) and the International Association of Hydrogeologists (IAH), Hyderabad, India, 6–12 September 2009; IAHS Press, Centre for Ecology and Hydrology: Hyderabad, India, 2009; pp. 98–102.; Lathuillière, M.J.; Bulle, C.; Johnson, M.S. Complementarity in mid-point impacts for water use in life cycle assessment applied to cropland and cattle production in Southern Amazonia. J. Clean. Prod. 2019, 219, 497–507. [CrossRef]; Schaubroeck, T.; Deckmyn, G.; Giot, O.; Campioli, M.; Vanpoucke, C.; Verheyen, K.; Rugani, B.; Achten, W.; Verbeeck, H.; Dewulf, J.; et al. Environmental impact assessment and monetary ecosystem service valuation of an ecosystem under different future environmental change and management scenarios; a case study of a Scots pine forest. J. Environ. Manag. 2016, 173, 79–94. [CrossRef]; Ferrarini, A.; Serra, P.; Almagro, M.; Trevisan, M.; Amaducci, S. Linking Bioenergy and Ecological Services Along Field Margins: The HEDGE-BIOMASS Project. In Proceedings of the 22nd European Biomass Conference and Exhibition, Hamburg, Germany, 23–26 June 2014; pp. 257–273.; Majsztrik, J.C.; Behe, B.; Hall, C.R.; Ingram, D.L.; Lamm, A.J.; Warner, L.A.; White, S.A. Social and Economic Aspects of Water Use in Specialty Crop Production in the USA: A Review. Water 2019, 11, 2337. [CrossRef]; Sauvé, S.; Lamontagne, S.; Dupras, J.; Stahel, W. Circular economy of water: Tackling quantity, quality and footprint of water. Environ. Dev. 2021, 39, 100651. [CrossRef]; Foteinis, S.; Chatzisymeon, E. Life cycle assessment of organic versus conventional agriculture. A case study of lettuce cultivation in Greece. J. Clean. Prod. 2016, 112, 2462–2471. [CrossRef]; Martin-Gorriz, B.; Maestre-Valero, J.F.; Gallego-Elvira, B.; Marín-Membrive, P.; Terrero, P.; Martínez-Alvarez, V. Recycling drainage effluents using reverse osmosis powered by photovoltaic solar energy in hydroponic tomato production: Environmental footprint analysis. J. Environ. Manag. 2021, 297, 113326. [CrossRef] [PubMed]; Bouzidi, B. Viability of solar or wind for water pumping systems in the Algerian Sahara regions—Case study Adrar. Renew. Sustain. Energy Rev. 2011, 15, 4436–4442. [CrossRef]; Santra, P. Performance evaluation of solar PV pumping system for providing irrigation through micro-irrigation techniques using surface water resources in hot arid region of India. Agric. Water Manag. 2021, 245, 106554. [CrossRef]; Kim, Y.; Zhang, Q. Economic and environmental life cycle assessments of solar water heaters applied to aquaculture in the US. Aquaculture 2018, 495, 44–54. [CrossRef]; Zhu, L.; Huo, S.; Qin, L. A Microalgae-Based Biodiesel Refinery: Sustainability Concerns and Challenges. Int. J. Green Energy 2015, 12, 595–602. [CrossRef]; Yousefloo, A.; Babazadeh, R. Designing an integrated municipal solid waste management network: A case study. J. Clean. Prod. 2020, 244, 118824. [CrossRef]; Gambino, I.; Bagordo, F.; Coluccia, B.; Grassi, T.; DeFilippis, G.; Piscitelli, P.; Galante, B.; Leo, F. De PET-Bottled Water Consumption in View of a Circular Economy: The Case Study of Salento (South Italy). Sustainability 2020, 12, 7988. [CrossRef]; Mayer, A.; Tavakoli, H.; Fessel Doan, C.; Heidari, A.; Handler, R. Modeling water-energy tradeoffs for cultivating algae for biofuels in a semi-arid region with fresh and brackish water supplies. Biofuels Bioprod. Biorefining 2020, 14, 1254–1269. [CrossRef]; Troester, M.; Brauch, H.-J.; Hofmann, T. Vulnerability of drinking water supplies to engineered nanoparticles. Water Res. 2016, 96, 255–279. [CrossRef]; Aberilla, J.M.; Gallego-Schmid, A.; Stamford, L.; Azapagic, A. Environmental assessment of domestic water supply options for remote communities. Water Res. 2020, 175, 115687. [CrossRef] [PubMed]; Emery, I.; Kempisty, D.; Fain, B.; Mbonimpa, E. Evaluation of treatment options for well water contaminated with perfluorinated alkyl substances using life cycle assessment. Int. J. Life Cycle Assess. 2019, 24, 117–128. [CrossRef]; Northey, S.A.; Mudd, G.M.; Werner, T.T.; Jowitt, S.M.; Haque, N.; Yellishetty, M.; Weng, Z. The exposure of global base metal resources to water criticality, scarcity and climate change. Glob. Environ. Change 2017, 44, 109–124. [CrossRef]; Manhart, A.; Vogt, R.; Priester, M.; Dehoust, G.; Auberger, A.; Blepp, M.; Dolega, P.; Kämper, C.; Giegrich, J.; Schmidt, G.; et al. The environmental criticality of primary raw materials—A new methodology to assess global environmental hazard potentials of minerals and metals from mining. Miner. Econ. 2019, 32, 91–107. [CrossRef]; Boyer, T.H.; Ellis, A.; Fang, Y.; Schaefer, C.E.; Higgins, C.P.; Strathmann, T.J. Life cycle environmental impacts of regeneration options for anion exchange resin remediation of PFAS impacted water. Water Res. 2021, 207, 117798. [CrossRef]; Haak, L.; Sundaram, V.; Pagilla, K. Sustainability Assessment for Indirect Potable Reuse: A Case Study from Reno, Nevada. Water Environ. Res. 2018, 90, 748–760. [CrossRef] [PubMed]; Godskesen, B.; Hauschild, M.; Albrechtsen, H.-J.; Rygaard, M. ASTA—A method for multi-criteria evaluation of water supply technologies to Assess the most SusTainable Alternative for Copenhagen. Sci. Total Environ. 2018, 618, 399–408. [CrossRef] [PubMed]; Iavicoli, I.; Leso, V.; Beezhold, D.H.; Shvedova, A.A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 2017, 329, 96–111. [CrossRef] [PubMed]; Lemming, G.; Friis-Hansen, P.; Bjerg, P.L. Risk-based economic decision analysis of remediation options at a PCE-contaminated site. J. Environ. Manag. 2010, 91, 1169–1182. [CrossRef] [PubMed]; Shiu, H.-Y.; Lee, M.; Chiueh, P.-T. Water reclamation and sludge recycling scenarios for sustainable resource management in a wastewater treatment plant in Kinmen islands, Taiwan. J. Clean. Prod. 2017, 152, 369–378. [CrossRef]; Mora, M.; Puerto, H.; Rocamora, C.; Abadia, R. New Indicators to Discriminate the Cause of Low Energy Efficiency in Deep-Well Pumps. Water Resour. Manag. 2021, 35, 1373–1388. [CrossRef]; Pan, S.-Y.; Haddad, A.Z.; Gadgil, A.J. Toward Greener and More Sustainable Manufacture of Bauxite-Derived Adsorbents for Water Defluoridation. ACS Sustain. Chem. Eng. 2019, 7, 18323–18331. [CrossRef]; Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [CrossRef]; López-Morales, C.A.; Rodríguez-Tapia, L. On the economic analysis of wastewater treatment and reuse for designing strategies for water sustainability: Lessons from the Mexico Valley Basin. Resour. Conserv. Recycl. 2019, 140, 1–12. [CrossRef]; Shew, A.M.; Nalley, L.L.; Durand-Morat, A.; Meredith, K.; Parajuli, R.; Thoma, G.; Henry, C.G. Holistically valuing public investments in agricultural water conservation. Agric. Water Manag. 2021, 252, 106900. [CrossRef]; Marinov, I.; Marinov, A.M. A Coupled Mathematical Model to Predict the Influence of Nitrogen Fertilization on Crop, Soil and Groundwater Quality. Water Resour. Manag. 2014, 28, 5231–5246. [CrossRef]; Prajapati, M.; Shah, M.; Soni, B.; Parikh, S.; Sircar, A.; Balchandani, S.; Thakore, S.; Tala, M. Geothermal-solar integrated groundwater desalination system: Current status and future perspective. Groundw. Sustain. Dev. 2021, 12, 100506. [CrossRef]; Ronquim, F.M.; Sakamoto, H.M.; Mierzwa, J.C.; Kulay, L.; Seckler, M.M. Eco-efficiency analysis of desalination by precipitation integrated with reverse osmosis for zero liquid discharge in oil refineries. J. Clean. Prod. 2020, 250, 119547. [CrossRef]; Melikoglu, M. Shale gas: Analysis of its role in the global energy market. Renew. Sustain. Energy Rev. 2014, 37, 460–468. [CrossRef]; Herath, I.; Green, S.; Horne, D.; Singh, R.; McLaren, S.; Clothier, B. Water footprinting of agricultural products: Evaluation of different protocols using a case study of New Zealand wine. J. Clean. Prod. 2013, 44, 159–167. [CrossRef]; Boulay, A.-M.; Bouchard, C.; Bulle, C.; Deschênes, L.; Margni, M. Categorizing water for LCA inventory. Int. J. Life Cycle Assess. 2011, 16, 639–651. [CrossRef]; Hao, C.F.; Qiu, Y.Q.; Niu, C.W.; Jia, Y.W. Research on Co-Benefits of Coal Consumption Control on Water Resources. In Proceedings of the 36th IAHR World Congress: Deltas of the Future and What Happens Upstream, The Hague, The Netherlands, 28 June–3 July 2015; IAHR-INT Assoc Hydro-Environment Engineering Research: Madrid, Spain, 2015; p. 5.; Sahin, O.; Siems, R.; Richards, R.G.; Helfer, F.; Stewart, R.A. Examining the potential for energy-positive bulk-water infrastructure to provide long-term urban water security: A systems approach. J. Clean. Prod. 2017, 143, 557–566. [CrossRef]; Stemmle, R.; Blum, P.; Schüppler, S.; Fleuchaus, P.; Limoges, M.; Bayer, P.; Menberg, K. Environmental impacts of aquifer thermal energy storage (ATES). Renew. Sustain. Energy Rev. 2021, 151, 111560. [CrossRef]; Dandautiya, R.; Singh, A.P. Utilization potential of fly ash and copper tailings in concrete as partial replacement of cement along with life cycle assessment. Waste Manag. 2019, 99, 90–101. [CrossRef]; Arden, S.; Morelli, B.; Cashman, S.; Ma, X.C.; Jahne, M.; Garland, J. Onsite Non-potable Reuse for Large Buildings: Environmental and Economic Suitability as a Function of Building Characteristics and Location. Water Res. 2021, 191, 116635. [CrossRef]; Lago, C.; Herrera, I.; Blanco, M.J.; Lechon, Y. Use of PV solar panels for irrigation in sorghum bicolor cultivation. How can solar energy help to reduce carbon footprint of energy crops? In Proceedings of the Papers of the 24th European Biomass Conference: Setting the course for a biobased economy, Florence, Italy, 6–9 June 2016; ETA-Florence Renewable Energies: Florence, Italy, 2016; p. 6.; Wakeel, M.; Chen, B. Energy Consumption in Urban Water Cycle. Energy Procedia 2016, 104, 123–128. [CrossRef]; Visentin, C.; da Silva Trentin, A.W.; Braun, A.B.; Thomé, A. Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation. Environ. Pollut. 2021, 268, 115915. [CrossRef] [PubMed]; Huysegoms, L.; Rousseau, S.; Cappuyns, V. Chemical or Natural? Including LCA in Social CBA to Compare Remediation Alternatives for a Dry-Cleaning Facility. Sustainability 2019, 11, 1975. [CrossRef]; Radanliev, P.; De Roure, D.C.; Walton, R.; Van Kleek, M.; Santos, O.; Montalvo, R.M.; Maddox, L. What Country, University or Research Institute, Performed the Best on COVID-19? Bibliometric Analysis of Scientific Literature. SSRN Electron. J. 2020, 1, 1–19. [CrossRef]; Meseguer-Sánchez, V.; Abad-Segura, E.; Belmonte-Ureña, L.J.; Molina-Moreno, V. Examining the Research Evolution on the Socio-Economic and Environmental Dimensions on University Social Responsibility. Int. J. Environ. Res. Public Health 2020, 17, 4729. [CrossRef] [PubMed]; VanderWilde, C.P.; Newell, J.P. Ecosystem services and life cycle assessment: A bibliometric review. Resour. Conserv. Recycl. 2021, 169, 105461. [CrossRef]; López-Serrano, M.J.; Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Román-Sánchez, I.M. Sustainable Use of Wastewater in Agriculture: A Bibliometric Analysis of Worldwide Research. Sustainability 2020, 12, 8948. [CrossRef]; Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water 2018, 10, 377. [CrossRef]; Zhang, S.; Mao, G.; Crittenden, J.; Liu, X.; Du, H. Groundwater remediation from the past to the future: A bibliometric analysis. Water Res. 2017, 119, 114–125. [CrossRef] [PubMed]; Komnitsas, K.A.; Doula, M.K. Framework to improve sustainability of agriculture in small islands: The case of Pistacia vera L. cultivation in Aegina, Greece. Environ. Forensics 2017, 18, 214–225. [CrossRef]; Carrión-Mero, P.; Morante-Carballo, F.; Herrera-Franco, G.; Jaya-Montalvo, M.; Rodríguez, D.; Loor-Flores de Valgas, C.; Berrezueta, E. Community-University Partnership in Water Education and Linkage Process. Study Case: Manglaralto, Santa Elena, Ecuador. Water 2021, 13, 1998. [CrossRef]; Goglio, P.; Williams, A.G.; Balta-Ozkan, N.; Harris, N.R.P.; Williamson, P.; Huisingh, D.; Zhang, Z.; Tavoni, M. Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. J. Clean. Prod. 2020, 244, 118896. [CrossRef]; Finkbeiner, M.; Ackermann, R.; Bach, V.; Berger, M.; Brankatschk, G.; Chang, Y.-J.; Grinberg, M.; Lehmann, A.; Martínez-Blanco, J.; Minkov, N.; et al. Challenges in Life Cycle Assessment: An Overview of Current Gaps and Research Needs. In Background and Future Prospects in Life Cycle Assessment; Springer Science & Business Media: Berlin, Germany, 2014; pp. 207–258.","G. Herrera-Franco; Facultad de Ciencias de La Ingeniería, Universidad Estatal Península de Santa Elena (UPSE), La Libertad, Avda. Principal La Libertad-Santa Elena, 240204, Ecuador; email: grisherrera@upse.edu.ec","","","","MDPI","","","","","","20734441","","","","English","Water","Article","Final","All Open Access; Gold Open Access; Green Open Access","Scopus","2-s2.0-85128338875"
Autores | Herrera-Franco, Gricelda (57212546828); Carrión-Mero, Paúl (57208038096); Montalván-Burbano, Néstor (57210814655); Mora-Frank, Carlos (57216865424); Berrezueta, Edgar (23007383200) |
Año | 2022 |
DOI | 10.3390/w14071082 |
Fuente | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128338875&doi=10.3390%2fw14071082&partnerID=40&md5=4a66094020184931155000a0e9ebbecb |
Afiliaciones | Facultad de Ciencias de La Ingeniería, Universidad Estatal Península de Santa Elena (UPSE), Avda. Principal La Libertad-Santa Elena, La Libertad, 240204, Ecuador; Geo-Recursos y Aplicaciones GIGA, ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090112, Ecuador; Centro de Investigación y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Campus Gustavo Galindo, Km 30.5 Via Perimetral, Guayaquil, 090112, Ecuador; Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo, ESPOL Polytechnic University, Km 30.5 Vía Perimetral, Guayaquil, 090112, Ecuador; Business and Economy Department, University of Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, Almeria, 04120, Spain; Departamento de Recursos para la Transición Ecológica, Instituto Geológico y Minero de España (IGME, CSIC), Oviedo, 33005, Spain |
Tipo de acceso abierto | All Open Access; Gold Open Access; Green Open Access |
Referencia | Scopus |
Artículo obtenido de: | Scopus |