Artículo

Unleashing the Potential of Blockchain and Machine Learning: Insights and Emerging Trends From Bibliometric Analysis

Resumen

Blockchain and machine learning (ML) has garnered growing interest as cutting-edge technologies that have witnessed tremendous strides in their respective domains. Blockchain technology provides a decentralized and immutable ledger, enabling secure and transparent transactions without intermediaries. Alternatively, ML is a sub-field of artificial intelligence (AI) that empowers systems to enhance their performance by learning from data. The integration of these data-driven paradigms holds the potential to reinforce data privacy and security, improve data analysis accuracy, and automate complex processes. The confluence of blockchain and ML has sparked increasing interest among scholars and researchers. Therefore, a bibliometric analysis is carried out to investigate the key focus areas, hotspots, potential prospects, and dynamical aspects of the field. This paper evaluates 700 manuscripts drawn from the Web of Science (WoS) core collection database, spanning from 2017 to 2022. The analysis is conducted using advanced bibliometric tools (e.g., Bibliometrix R, VOSviewer, and CiteSpace) to assess various aspects of the research area regarding publication productivity, influential articles, prolific authors, the productivity of academic countries and institutions, as well as the intellectual structure in terms of hot topics and emerging trends. The findings suggest that upcoming research should focus on blockchain technology, AI-powered 5G networks, industrial cyber-physical systems, IoT environments, and autonomous vehicles. This paper provides a valuable foundation for both academic scholars and practitioners as they contemplate future projects on the integration of blockchain and ML.
Khamisy-Farah, Rola (55808741800); Gilbey, Peter (55980203000); Furstenau, Leonardo B. (57211463471); Sott, Michele Kremer (57218374403); Farah, Raymond (14013894800); Viviani, Maurizio (57231700200); Bisogni, Maurizio (57232852500); Kong, Jude Dzevela (56305065700); Ciliberti, Rosagemma (6507895664); Bragazzi, Nicola Luigi (57212030091)
Big data for biomedical education with a focus on the covid-19 era: An integrative review of the literature
2021
10.3390/ijerph18178989
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113546517&doi=10.3390%2fijerph18178989&partnerID=40&md5=d9dcc718aa0b917324d63a4b1f8d88c9
Clalit Health Service, Akko, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 13100, Israel; Azrieli Faculty of medicine, Bar Ilan University, Safed, 13100, Israel; Department of Industrial Engineering, Federal University of Rio Grande do Sul, Porto Alegre, 90035-190, Brazil; Business School, Unisinos University, Porto Alegre, 91330-002, Brazil; Department of Internal Medicine B, Ziv Medical Center, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 13100, Israel; TransHumanGene, MedicaSwiss, Cham, Zug, 6330, Switzerland; Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, M3J 1P3, ON, Canada; Section of History of Medicine and Bioethics, Department of Health Sciences (DISSAL), University of Genoa, Genoa, 16132, Italy
All Open Access; Gold Open Access; Green Open Access
Scopus
Artículo obtenido de:
Scopus
0 0 votos
Califica el artículo
Subscribirse
Notificación de